NOVEMBER, 1915.

THE JOURNAL

OF THE

American Chemical Society

with which has been incorporated the

American Chemical Journal

(Founded by Ira Remsen)

ANNUAL REPORT OF THE INTERNATIONAL COMMITTEE ON ATOMIC WEIGHTS, 1916.

Received September 13, 1915.

Although many scientific activities have been interrupted by the European war, a fair number of atomic-weight determinations have appeared since the report for 1915 was prepared. They are, briefly, as follows:

Carbon.—Richards and Hoover¹ neutralized sodium carbonate with hydrobromic acid which had been standardized against silver. In this way the ratio of carbonate to silver was determined. With Ag = 107.88, Br = 79.916 and Na = 22.995, C = 12.005.

Sulfur.—Atomic weight also determined by Richards and Hoover,² who measured the ratio between sodium carbonate and sulfate. With the values previously assigned to sodium and carbon, S = 32.060.

Iodine.—By the direct analysis of iodine pentoxide, Guichard³ finds I = 126.92.

Copper.—The electrolytic ratio between copper and silver has been remeasured by Shrimpton,⁴ with Ag = 107.88, Cu = 63.563, as the mean of ten determinations.

¹ This Journal, 37, 95.

- ³ Compt. rend., 159, 185.
- 4 Proc. Phys. Soc. London, 26, 292.

² Ibid., 37, 108.

2450 INTERNATIONAL COMMITTEE ON ATOMIC WEIGHTS, 1916.

Nickel.—Oechsner de Coninck and Gerard,¹ by reduction of nickel oxalate in hydrogen, find Ni = 58.57. Few details are given.

Cadmium.—By the electrolysis of cadmium chloride Baxter and Hartmann² find Cd = 112.417. This confirms the earlier work of Baxter and his colleagues, and gives cadmium a much higher value than was found by Hulett.

Mercury.—By the synthesis of mercuric bromide Baker and Watson³ find Hg = 200.57, when Br = 79.92. This value is near that found by Easley.

Lead.—By the analysis of lead bromide Baxter and Thorvaldsen⁴ find Pb = 207.19. With the chloride, Baxter and Grover⁵ obtained the value 207.21, and with the bromide, 207.19. These determinations were made with *normal* lead from widely separated and dissimilar sources, and are highly concordant.

The value Pb = 207.20 will be adopted in the table of atomic weights.

Lead from radioactive minerals, however, has been found to differ in atomic weight from ordinary lead. For lead from thorite Soddy and Hyman⁶ found atomic weights ranging from 208.3 to 208.5. Maurice Curie⁷ studied lead from pitchblende, carnotite, and yttrotantalite, and obtained values from 206.36 to 206.64. Lead from monazite and galena was more nearly normal. Hönigschmid and Horowitz⁸ studied lead from pitchblende, and by analyses of the chloride found Pb = 206.735. Richards and Lembert⁹ made six series of analyses of lead chloride prepared with lead derived from carnotite, thorianite, pitchblende and uraninite, the mean values being Pb = 206.59, 206.81, 206.83, 206.57, 206.86, and 206.36. These figures, although each series is concordant within itself, show that radio lead is variable in its atomic weight, and that the single, definite metal is yet to be completely isolated. Indeed, the relations between radio lead (or leads) and ordinary lead are still obscure.

Tin.—Briscoe,¹⁰ by analyses of the tetrachloride SnCl₄ finds Sn = 118.70, when Ag = 107.88 and Cl = 35.457. This new value, which was determined with all modern precautions, will be adopted in the table.

Tantalum.—Sears and Balke,¹¹ in a preliminary series of determinations

- ¹ Compt. rend., 158, 1345.
- ² THIS JOURNAL, 37, 113.
- ³ J. Chem. Soc., 107, 63.
- 4 THIS JOURNAL, 37, 1021.
- ^b Ibid., 37, 1027.
- ⁶ J. Chem. Soc., 105, 1402.
- ⁷ Compt. rend., 158, 1676.
- ⁸ Z. Electrochem., 20, 457.
- ⁹ THIS JOURNAL, 36, 1329.
- 10 J. Chem. Soc., 107, 63.
- ¹⁾ THIS JOURNAL, 37, 830.

of the ratio between TaCl₅ and Ag, obtained values for Ta ranging between 180.90 and 182.14. The research is to be continued.

Praseodymium.—Baxter and Stewart,¹ in a long series of concordant analyses of the chloride $PrCl_3$, find Pr = 140.92. The rounded-off figure 140.9 will be adopted here.

INTERNATIONAL ATOMIC WEIGHTS, 1916.

Sy	Atomic mbol. weight.	Symbol.	Atomic weight.
Aluminum	Al 27.1	MolybdenumMo	96.0
Antimony	Sb 120.2	NeodymiumNd	144.3
Argon	A 39.88	NeonNe	20,2
Arsenic	As 74.96	NickelNi	58.68
Bariuml	Ba 137.37	Niton (radium emanation)Nt	222.4
Bismuth	Bi 208.0	Nitrogen N	14.01
Boron	В 11.0	OsmiumOs	190.9
Bromine	Br 79.92	OxygenO	16.00
Cadmium	Cd 112.40	PalladiumPd	106.7
Caesium	Cs 132.81	PhosphorusP	31.04
Calcium	Ca 40.07	PlatinumPt	195.2
Carbon	C 12.005	PotassiumK	39.10
Cerium	Ce 140.25	PraseodymiumPr	140.9
Chlorine	Cl 35.46	RadiumRa	226.0
Chromium	Cr 52.0	RhodiumRh	102.9
Cobalt	Co 58.97	RubidiumRb	85.45
Columbium	Cb 93.5	RutheniumRu	101.7
Copper	Cu 63.57	SamariumSa	150.4
Dysprosium	Dy 162.5	ScandiumSc	44.I
Erbium	Er 167.7	SeleniumSe	79.2
Europium	Eu 152.0	SiliconSi	28.3
Fluorine	F 19.0	SilverAg	107.88
Gadolinium	Gd 157.3	SodiumNa	23.00
Gallium	Ga 69.9	StrontiumSr	87.63
Germanium	Ge 72.5	SulfurS	32.06
Glucinum	Gl 9.1	TantalumTa	181.5
Gold	Au 197.2	TelluriumTe	127.5
Helium	He 4.00	TerbiumTb	159.2
Holmium	Ho 163.5	Thallium	204.0
Hydrogen	H 1.008	ThoriumTh	232.4
Indium	ín 114.8	ThuliumTm	168.5
Iodine	126.92	TinSn	118.7
Iridium	(r 193.1	TitaniumTi	48.I
Iron	Fe 55.84	TungstenW	184.0
Krypton	Kr 82.92	UraniumU	238.2
Lanthanuml	La 139.0	$Vanadium \dots V$	51.0
Lead	Pb 207.20	XenonXe	130.2
Lithium	Li 6.94	Ytterbium (Neoytterbium)Yb	173.5
Lutecium	Lu 175.0	YttriumYt	88.7
Magnesium	Mg 24.32	Zinc:Zn	65.37
Manganese	Mn 54.93	ZirconiumZr	90.6
Mercury	Hg 200.6		

¹ THIS JOURNAL, 37, 516.

2452 JOEL H. HILDEBRAND AND ERMON DWIGHT EASTMAN.

Ytterbium.—Blumenfeld and Urbain,¹ in a series of analyses of the sulfate $Yb_2(SO_4)_{3.8}H_2O$, find Yb = 173.54. This may be rounded off to 173.5.

Uranium.—Hönigschmid,² from analyses of the bromide UBr₄, finds U = 238.18. The value 238.2 may properly be adopted.

At the meeting of the International Congress of Applied Chemistry, in 1912, a resolution was passed favoring delay in changes in the table of atomic weights. In accordance with the desire so expressed, no changes have since been made, but several now seem to be necessary. These relate to C, S, He, Sn, Pb, Ra, U, Yt, Pr, Yb, Lu, and U. The reasons for the changes, which are small, may be found in this and the three preceding reports. They are based upon new determinations, which seem to be better than the old.

(Signed)

F. W. Clarke, T. E. Thorpe, W. Ostwald.

NOTE.—Professor Urbain, because of an official connection with the military service of France, is debarred from signing any international report during the war. Otherwise he would approve this report.

F. W. C.

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF THE UNIVERSITY OF CALIFORNIA.]

THE VAPOR PRESSURE OF THALLIUM AMALGAMS.

By JORL H. HILDEBRAND AND ERMON DWIGHT EASTMAN. Received September 3, 1915.

The work presented in this paper is in continuation of the series of investigations undertaken by one of us on the laws of concentrated solutions. The previous papers include vapor pressure measurements on zinc,³ silver,⁴ gold,⁴ and bismuth⁴ amalgams, and also a discussion of e. m. f. measurements to be found in the literature on the amalgams of zinc, tin, lead, thallium, indium and cadmium.¹ We would refer to the earlier papers for the progress of the work up to this point, as well as for references to the literature.

The experimental procedure was essentially the same as that used in working with bismuth amalgams, so that it is unnecessary to repeat its description here. The thallium used was analyzed for lead, two experiments giving 0.3% and 0.25%, respectively, an amount of impurity far too small to have any effect on these measurements.

¹ Compt. rend., 159, 325.

² Z. Electrochem., 20, 452.

³ J. H. Hildebrand, Orig. Comm. 8th Intern. Congr. Appl. Chem., 22, 139, 147; Trans. Am Electrochem. Soc., 22, 319, 335 (1912); THIS JOURNAL, 35, 501 (1913).

⁴ Ermon D. Eastman and J. H. Hildebrand, This Journal, 36, 2020 (1914).